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Abstract
Wheat is an important staple crop for large sections of the population for many cultures across the globe. It is vital 
that one of the major impediments to its cultivation, namely disease, be prevented and controlled appropriately. 
A possible strategy for controlling yield loss due to disease is early identification to prevent their spread and 
minimize losses. An automated method must be developed to identify disease and that can be done through the 
implementation of computer vision. Such a tool can be used in drones on a larger scale or possibly smart phones 
on a smaller scale to identify diseases in wheat. A computationally efficient model for early detection of wheat 
crop diseases using a pre-trained convolutional neural network is developed in this research and is compared with 
models as VGG16, MobileNet, and ResNet50, demonstrating superior performance in terms of computational cost 
and accuracy, precision, recall, and F1-score.
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Introduction

Wheat is one of the most popular cereal grains
consumed worldwide. Experts estimate 

its cultivation began around 10,000 years ago in 
southeast Turkey. The most popular variety of wheat 
is bread wheat, sometimes known as common wheat. 
Compared to other food crops, it is cultivated on the 
most acreage. (220.4 million hectares, 2014). More 
wheat is traded globally than all other crops combined. 
With global productions of 764 million tons of wheat 
in 2019, and 772 million tons are anticipated to be 
produced in 2020. It is a good source of carbohydrates, 
as well as several vitamins and minerals. Particularly 
whole wheat provides a lot of advantages for our 
health. Different types of wheat are commonly used in 
everyday food products. For example, Club wheat (T. 
compactum) is a softer variety used in making cakes, 
crackers, cookies, pastries, and flours. Durum wheat (T. 
durum) is primarily used for producing pasta varieties 
such as spaghetti and macaroni, while common wheat 
(Triticum aestivum) is typically used in bread-making. 
Diseases account about 20% of the annual loss of wheat. 

50 of the 200 wheat illnesses generate monetary losses 
and are widespread. The proposed approach achieved 
impressive results, with a recognition rate of up to 91%, 
by utilizing an ANN classifier for classification and a 
Gabor filter for feature extraction. The ANN classifier 
combines various features, including textures, colors, 
and patterns, to effectively categorize and identify 
different plant diseases. Around the world, fungus-
related wheat illnesses result in production losses of 
roughly 20% and have diverse effects on grain quality. 
New pathogen races emerge often, well-known 
illnesses impact new hosts, and newly developing 
diseases pose a danger to wheat production. A large 
range of fungal pathogenic diseases pose the greatest 
danger to wheat because they cause significant crop 
loss. Rusts, smuts, Fusarium head blight, Septoria leaf 
blotch, tan spot, and powdery mildew is among the 
pests that cause the most damage. It is predicted that 
grain yields must increase by at least 70% by 2050 to 
fulfil the demands of a worldwide population rising at 
the current rates, given the pre-existing global hunger 
issue. It is not feasible to limitlessly expand land under 
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architecture because the amount of land that can be 
used for agriculture is intrinsically limited—whether 
by fertility, water availability, or owing to the inherent 
restrictions on land. Therefore, we need to figure out 
how to increase yields in the current agricultural area. 
The prevalence of disease in crops is a significant 
barrier to achieving this goal. According to studies, 
worldwide grain production losses from diseased 
crops range between 18% and 21.5%, and in individual 
wheat hotspots, they range between 10.1% and 28.1%. 
Given the serious effects of wheat diseases and the 
importance of wheat as a commodity in the world’s 
food markets, it is crucial that they are identified early 
and treated.

Disease detection in particular plants presents a 
problem because it is difficult and expensive to 
collect large, labelled datasets for them due to a 
variety of factors, including local weather conditions 
and challenges in locating experts in the field to 
identify the diseased plants for which the dataset can 
be collected. Large datasets for these challenges are 
therefore difficult to construct or, in certain situations, 
just not practical. Consequently, in these situations, the 
datasets are somewhat small (less than 5000 images). 
When training deep CNN models from scratch, 
smaller datasets need more time and resources, such 
as computing hardware (GPUs, CPUs, and RAM), 
because these models must be trained with a relatively 
high number of parameters, which increases their 
computational complexity. Additionally, used smaller 
datasets mean fewer samples for the model, which 
can result in overfitting the model. In other words, 
the model will perform well on training data, but will 
have limitations with testing and new data because 
there isn’t enough observed variance in the data for 
the model to be able to generalise the data effectively 
to use with new data points. Transfer learning, where 
we leverage models pretrained on a separate, large 
dataset, can be used to solve deep learning problems 
with small datasets. Instead of utilising random 
weights while training the model on the real dataset, 
the weights learned through pretraining might be 
employed. By using pretrained weights to reduce the 
number of parameters to be trained, by “fixing” some 
of the initial layers, i.e., using their parameters as-is, 
and only training the final few, the model can apply 
the knowledge gained from pretraining dataset without 

having to start from scratch. As a result of the decreased 
number of parameters that must be learned the training 
time and computational needs of the model are both 
greatly reduced. Furthermore, the model only has to be 
significantly modified to the specific situation because 
it already has enough data to make generalisations from 
the pretraining data. Transfer learning therefore offers 
a practical, affordable way to train a deep learning 
model for issues where data is either unavailable or 
difficult to gather. Disease detection technologies 
based on mobile applications is a viable use case for 
disease detection in wheat to improve grain yields. 
Given that over 90% of people worldwide own a 
mobile phone, farmers have the opportunity to utilise 
a smartphone app to identify illnesses in their crops 
and request assistance as needed. Without specialised 
assistance, we must rely on visual disease diagnosis in 
wheat. Since the most common illnesses in wheat tend 
to be fungal infections that emerge in the leaves, this 
may be accomplished by categorising photographs of 
wheat leaves. Convolutional neural networks (CNNs) 
are one of the most crucial techniques for classifying 
issues in pictures [1]. In order to solve the problem of 
disease detection and classification in wheat, a CNN 
architecture has been proposed in this paper, which 
draws inspiration from the already existing models 
and optimises the same in terms of the computational 
requirements, further leading to the reduction in time 
taken to evaluate the given input, offering viable 
real- world application of the model on less powerful 
machines like more affordable smartphones.

The rest of this paper is organised as follows. Section 
II reviews the existing literature on illness detection 
approaches such as convolutional neural networks. 
Section III describes the architecture of the proposed 
model, highlighting its different elements. Section IV 
present the stepwise implementation of proposed model 
for wheat disease detection, performance evaluation of 
proposed model followed by comparison with state of 
art models. Section V provides the major findings of 
this research followed by the conclusion and future 
scope in the last section.

Literature Review

There exists a history of literature solving disease 
classification problems in plants, including maize, 
potatoes, rice, and wheat among others [2]. Many 
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authors have proposed solutions to this problem in the 
form of various architectures. Most of these employ 
CNNs to perform image classification, with some using 
self-created CNN architectures and some adapting 
popular architectures for solving the same[3]. In [4], 
the authors assessed the performance of support vector 
machines (SVM), backpropagation neural networks, 
and generalized regression neural networks, comparing 
them with traditional multiple regression methods. 
The study found that an SVM-based regression 
approach provided a more effective representation of 
the relationship between environmental factors and 
disease severity, offering potential benefits for disease 
management. Further, image processing techniques [5] 
have been employed for the automated classification 
of plant diseases through the analysis of leaf images. 
The study employs the SVM classifier to differentiate 
between healthy and diseased soybean leaves. To assess 
the system’s performance, a dataset consisting of 120 
images, captured from multiple farms using different 
mobile cameras, was used. The SIFT algorithm enables 
precise identification of plant species by analyzing leaf 
shapes. With an average accuracy of 93.79%, the SVM 
classifier effectively distinguishes between healthy 
and sick soybean leaves. Researchers in [6] used deep 
learning technologies to identify diseases in various 
plants. One of the key processes in their methodology 
was the in-depth image processing, including histogram 
equalization, noise filtering, and decolorization, and 
various image segmentation techniques. By separating 
the image into different parts and studying each section 
separately, image segmentation helps to make image 
identification and analysis simpler. All parts share the 
same qualities in terms of color, texture, and intensity. 
The segmentation is a region-based technique to 
differentiate the unhealthy and healthy parts of the 
leaves on the bases of color. This approach performed 
well with multiple plants and crops, highlighting the 
importance of in-depth image processing techniques. 
The HOG approach for feature extraction has been 
applied [7], where, a histogram of gradient orientation 
representation over the pictures is computed using 
the HOG, which is utilised to partition the image 
into distinct portions. By counting the incidence of 
the gradient orientation, it collects features. HOG 
is required in many sectors of object identification, 
including as face recognition and in our study, for 
plant leaf recognition. Application of Artificial Neural 

Network technology and a variety of image processing 
techniques is done to provide a methodology for 
early and precise plant disease identification [8]. The 
suggested method produced superior results with a 
recognition rate of up to 91% since it is based on an 
ANN classifier for classification and a Gabor filter for 
feature extraction. An ANN-based classifier employs a 
mix of textures, colors, and characteristics to categories 
various plant diseases and identify them. Authors 
in [9] used AlexNet architecture to classify wheat 
disease, with accuracy of 84.54%. They employed the 
AlexNet architecture to train their model but owing 
to a smaller dataset chose to pretrain the model on 
other data to initialize weights. All the photos in the 
dataset were downsized to ‘227 × 227’ in accordance 
with the requirements of the AlexNet architecture. By 
using ReLu and MaxPooling, features were retrieved 
from the convolutional layers of the CNN model. 
Using powerful machines, the authors trained the deep 
architectures on a sizable dataset like ImageNet in the 
pre training phase. It was inferred from the paper that 
the smaller dataset would lead to overfitting problem. 
Hence the concept of using a model which has already 
been trained on a larger dataset was developed so that 
the model generalizes better. Alternative method is to 
train only the final classification layer while freezing 
the weights of the first layer. Further a method for 
classifying and diagnosing four common diseases 
affecting apple leaves has been proposed in the study put 
out by [10], which in comparison to a typical AlexNet 
model, the architecture achieved an overall accuracy 
of 97.62% with significantly fewer parameters. It has 
been observed that advancements in CNN performance 
are primarily driven by the development of new blocks 
and structural redesigns [11].

A variation of LeNet architecture [12]. has an additional 
block of convolutional, activation, and pooling layers. 
In this architecture, three such blocks are used, 
followed by completely connected layers and softmax 
activation. While fully connected layers are used for 
classification, convolutional and pooling layers were 
utilised to extract features. The max-pooling layer 
was used to speed up training and reduce the model’s 
sensitivity to small changes in input by reducing the 
size of the feature maps. Each of the blocks employed 
the ReLU activation layer to introduce nonlinearity. In 
order to prevent overfitting, the train set, the Dropout 
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regularisation algorithm had also been applied with 
a probability of 0.4. Dropout regularisation reduces 
model variance and streamlines the network, which 
helped minimise overfitting by randomly removing 
neurons from the network after each iteration of 
training. LeNet was put forward as an explainable model 
that could reliably, promptly, and precisely identify 
and measure leaf tension [13], which further aimed 
at developing a 95.04% accurate real-time detection 
system for mobile platforms in order to quickly and 
broadly observe crips in actual production conditions. 
A CNN architecture known as the supervised 3D-CNN 
based model was introduced [14] to learn the spectral 
and spatial information of hyperspectral images for the 
categorization of healthy and samples that have been 
exposed to charcoal rot. The hyperspectral wavelengths 
that significantly improve classification accuracy 
were found using a saliency map-based visualization 
technique. The model’s categorization accuracy was 
95.73%. Authors in [15] illustrated the extraction and 
categorization of groundnut leaf disease using color 
imagery. With the help of a neural network, the color 
imaginary transform, color co- occurrence matrix, and 
feature extraction were carried out. With a complicated 
backdrop, back propagation proved to be effective in 
groundnut leaf detection, and was successfully able to 
diagnose the illnesses.

A CNN, that made use of data-augmentation, transfer 
learning, and MBGD as an optimizer, has been used 
[16] to obtain an overall testing accuracy of 97.61%
with a loss value of 0.35. Loss functions were applied
to assess the model’s performance. Categorical Cross-
Entropy is one such loss function used in this study for
multi-class categorization. It contrasts the projections’
distribution with the labels’ actual distribution. For
all other classes, the likelihood is maintained at 0,
but the probability of the correct class is maintained
at 1. Research presented in [17] employed a 5-layer
self-designed convolutional network, along with a
regression layer to identify diseased leaves. They
explained that the neural network is composed of
various layers, including the input layer, convolutional
layer, output layer, and fully connected layer. They
noted that more layers can be added using the
convolutional layer. The first step is to load the input
data, followed by creating the convolution layer. It is
mentioned that every layer has an activation function.

They discuss the combination of a pooling function 
with a convolutional neural network. In this particular 
case, they have constructed five convolutional layers 
and added matching pooling. They have taken the last 
fully linked layer and applied a softmax activation 
function at the end of each layer. In order to receive 
the result and employ the optimizer, the regression 
layer is used at the end. A self-designed 6-layer-deep 
convolutional neural network architecture is used to 
identify leaf disorders in multiple plants [18], building 
upon it with addition of other standard algorithms, such 
as the ADAM optimizer and the softmax classifier. 
The ReLu activation function, the picture input shape 
of ‘256, 256, 3’, the filter size of ‘64’, the kernel size 
of ‘88’, the Padding, and the strides of ‘11’ were all 
included in the first convolutional layer. The second 
convolutional layer exhibited the same form as the first 
layer and added some more features. The image size and 
the kernel size were reduced in the subsequent layers. 
They employed the ReLu activation function and max 
pooling layers with the ADAM optimizer, using an 
additional softmax layer to classify the healthy and 
diseased leaves, achieving an accuracy of 96.28% on 
testing dataset. The use of image expansion techniques 
like alteration of image shapes and angles have led to 
higher accuracy when dealing with redundant data. 
HOResNet [19], a different ResNet-based architecture 
that aims for a robust recognition of plant diseases was 
proposed. With photos captured in actual agricultural 
situations, the study investigates the issue of low 
precision in the diagnosis and classification of plant 
diseases. By experimenting with photographs of 
various sizes, shooting angles, positions, backgrounds, 
and lighting, it strengthens the ability to resist influence. 
The outcomes showed that the method was accurate 
in detecting diseases between 90.14% and 91.79%. 
A CNN-based approach of identifying anthracnose 
lesions by employing data augmentation methods using 
Cycle-Consistent Adversarial Network (CycleGAN) 
[20], used a DenseNet to enhance the low-resolution 
resource layers of the YOLO-V3 model, resulting in 
accuracy of 95.57%. A novel deep convolutional neural 
network (DCNN)-based method for the identification 
of yellow rust crop disease [21], utilises extremely 
high spatial resolution hyperspectral pictures taken 
with UAVs. The suggested model included a number 
of Inception-ResNet layers for feature extraction and 
was tuned to determine the network’s ideal depth and 
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breadth. The idea uses three-dimensional data and can 
identify yellow rust in wheat with an accuracy of 85% 
by using spatial and spectral data. OR-AC-GAN is a 
technique discussed in [22], that was created for the 
early identification of the tomato spotted wilt virus 
utilizing hyperspectral images and an auxiliary external 
removal classifier using opposed generation networks. 
Plant segmentation, spectrum classification, and 
picture classification are all included in the concept. 
The findings indicated that the accuracy reached 
96.25% before the onset of apparent symptoms. The 
deep study of the available literature points towards 
some common limitations of the existing methods for 
wheat disease detection as given below.

• Computational Complexity, the hardware needs
required to run these models are significant,
limiting total model utilisation and even additional
model advancements such as detection of new
illnesses or diseases in other crops.

• Training time, or the time required to learn from
the database and adjust its internal parameters
for making future predictions is high and will
continue to rise proportionally with the size of the
dataset, making it difficult to update the underlying
database on a regular basis to improve the results.

• Inconsistent findings across many performance
criteria; aside from accuracy, other performance
metrics were inconsistent in all circumstances.

Materials and Methods

A deep learning-based framework for wheat disease 
detection and classification is developed using the 
convolutional neural network as shown in Fig. 1. The 
description of all the components of the developed 
model is provided below.

Convolutional Neural Network

Convolutional Neural Networks have made significant 
advancements over the past decade in fields pertaining 
to pattern recognition such as voice recognition and 
image processing. One of major reasons behind the 
desirability of Convolutional Neural Networks over 
Artificial Neural Networks is the reduction in the 
parameter count [23], thus making it a viable solution 
for researchers to build bigger models to solve much 
complex problems that could not be addressed by 
regular ANNs. One of the most crucial assumption of 

problems that CNN solves is that they involve spatially 
independent features, in the case of a leaf detection tool, 
the primary focus is discovering the leaf in an image 
regardless of its positioning in that image. Another 
important aspect of CNN is its ability to extract abstract 
features while input propagates to deeper levels, in 
the example of an image detection tool, the first layer 
could extract the boundary or edges of the image, 
followed by the second layer extracting simpler forms 
and finally the higher-level features such as the object 
such as the leaf being extracted in the subsequent layers 
[24]. Due to the reduction in the parameter count and 
the ability to extract features while input propagation, 
as compared to other algorithms for pattern-based 
classifications, CNNs require substantially lower pre- 
processing [25]. CNN have the ability to automatically 
and adaptively learn filters through the process of 
back- propagation supported by convolution, pooling 
and a fully- connected layer in order to extract the 
relevant features for the classification, taking away 
from manually preparing these filters in the traditional 
approaches. This ability enables the network to better 
understand the complexity of the image, by providing 
a better fit for the image dataset by reduction in the 
number of parameters to be examined as well as the 
ability to reuse the weights.

Fig. 1. Architecture diagram of proposed model for wheat 
disease detection and classification
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Layers

• Pooling: Pooling is a significant step in any
convolution- based networks, it helps in
compressing the feature maps extracted in the
previous layer. It preserves important information
and removes unnecessary information by
combining a group of values into a smaller
group of values, thus turning the joint feature
representation into valuable information. This
further enables the model to be trained properly
only on the dominating features that are spatially
invariant, i.e. not affected by the position or the
rotation of the object being classified. Polling is
further divided into two classes: max pooling and
average pooling. Max pooling yields the greatest/
largest value from the region covered by the Kernel
on the image. Whereas, average pooling yields the
average of all the values from the region covered
by the Kernel on the image. Our model makes
use of the Max Pooling class, it not only derives
the highest values from the region but also helps
in de-noising as well as completely ignoring the
defective activations. Average pooling, on the
other hand, only compresses the feature map as a
noise suppression technique. Thus, max pooling
out performs average pooling and makes it more
fit for application with our proposed model.

• Flatten and Dense (Fully Connected Layer):
Fully connected layer is (usually) an easier and cost-
efficient way of learning non-linear combinations
of high-level characteristics observed from the
result of the convolutional layer, enabling the
fully-connected layer to learn a function that may
or may not be linear in that area [26]. The initial
convolutional layer in a neural network has to know
the dimension of the picture that is provided to it
as input. The output of the picture will be provided
to the dense layer after it has been processed
through all convolutional layers and pooling
layers. Because the convolutional layer’s output
is multidimensional and the dense layer’s input
is single- dimensional, or a 1-D array, we cannot
pass the convolutional layer’s output directly to the
dense layer. As a result, between the convolutional
and dense layers, we will utilise the Flatten()
technique. A multidimensional matrix is reduced
to a single dimension via the flatten() technique. In

neural networks where data is processed in a single 
direction, the input received is flattened and back 
propagation is used in each of the training cycle. The 
model with the help of classification methods such 
as softmax is able to characterise images across a 
number of epochs by identifying dominating and 
specific low-level features. A dense layer is deeply 
connected with its preceding layers, where each of 
the neuron in the dense layer receives input from 
all of the neurons of the previous layer. The results 
from the convolutional layer serve as a base upon 
which the dense layer is applied to categorize the 
images [27].

Activation Function

The neurons calculate a weighted average of their input 
in each of the layers of the neural network, the output 
of the same being processed through a non-linear 
function called the “activation function” serves as the 
neuron’s output. This procedure is applied throughout 
the neurons present in all the levels of the neural 
network. The convolution neural network’s activation 
function is a crucial component. A nonlinear activation 
function is typically used to map the calculated features 
in the three phases of a convolution neural network, 
convolution, sub-sampling, and full-connection, 
in order to overcome the problem of inadequate 
expressiveness produced by linear operation [27].

• ReLU: The Rectified Linear Activation Unit,
has become the norm for a variety of neural
networks because of its ease to train and the
frequent performance enhancements. Depending
upon the input, if the input is positive the ReLU
returns the input as it is for the output but if the
input is negative, the ReLU returns 0 in place of
the original input, thus resulting in reduction in the
overall computation going forward. The Rectified
Linear Activation Function provides a solution for
converting a non-linear function to behave like a
linear function which is a mandatory requirement
for training a deep neural network using stochastic
gradient descent with back propagation of
mistakes. A ReLU, is a component that performs
the REL function or the change in behaviour of a
non-linear function to a linear function. Further,
rectified networks make use of rectifier function
in the hidden layers. Due to the fragility of ReLu
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activation neurons, some input during training 
may fall into the hard saturation area, leading 
to permanent neuronal death, preventing the 
updating of the appropriate weight. Additionally, 
the Relu function generates the output with 
migration phenomena by setting a portion of the 
neuron’s output to zero. Such obnoxious forced 
sparse processing may hide numerous beneficial 
characteristics, having a negative impact on the 
effectiveness of model learning. Excessive sparsity 
may cause increased error rates and lower the 
model’s useful capacity. The convergence of the 
network may be impacted by both the migration 
phenomena and neuronal death.

• Softmax: The Softmax Function, a generalisation
of the Logistic Function, guarantees that our
forecast adds up to 1. The Softmax function usually
serves as the activation function at final layer in a
neural network to normalize the output of a network 
to a probability distribution over predicted output
class. The Softmax function and the cross-entropy
function are closely related, on application of the
Softmax function, the cross-entropy function is
acts as the loss function in the network to validate
the model’s correctness as well as to improve the
functioning of the network. The cross entropy helps
overcome issues such as the output value being
much smaller than the true value at the start of the
back propagation, by slowing the gradient descent.
The Softmax function reduces the vector of K real
values into a vector of K real values that sum up
to 1 by converting all of the varying values in the
vector to be between 0 and 1, thus enabling it to
be interpreted in terms of probability. It translated
little or negative values into smaller probability
and on the other hand, the larger or positive
values into probabilities, but always summing up
to ‘1’.

Wheat Disease Detection 
and Classification

This section presents the stepwise procedure of wheat 
disease detection and classification using the developed 
model described in earlier section-2. The stepwise 
implementation procedure for the developed model is 
given in algorithm-1.

Algorithm-1: Developed model for wheat disease 
Detection and Classification

• To begin, the actual and pretraining datasets are compiled.
In order to prepare the images for learning, they are pre-
processed by resizing, rescaling, and formatting the
color space. The images are then flattened into vectors
for processing.

• Next, the compiled pretraining dataset is run through the
model. This helps initialize the weights to more relevant
values for training, rather than relying on random
initialization of weights.

• Then, the actual dataset is split into training and testing
sets using random selection.

• Next, the training dataset is run through the pretrained
model. This step calibrates the preinitialized weights to
the actual dataset for prediction on unseen data, resulting
in the final, fully trained prediction model.

• To evaluate the model, the testing dataset is run through
the final model and assess it using various selected
metrics.

Dataset Description

For the pre-training dataset, the data was compiled 
from the freely available [28]. A neural network is pre-
trained by first applying the model to a single task or 
dataset. Afterwards, the model is trained on a different 
task or dataset using the parameters or model from 
previous training. By doing this, the model gains an 
advantage over beginning from scratch. This dataset 
contains approximately 87K RGB images of healthy 
and diseased leaves and which is divided into 38 classes 
that include crops of apple, bell pepper, cherry, corn, 
grapes, orange, peach, blueberry, potato, raspberry, 
soyabean, strawberry, and tomato, some of which are 
shown in Table 1 along with their distribution. For the 
actual training dataset information was gathered from 
a number of publicly accessible databases [29]. Images 
of the affected plants were gathered from various 
databases for the three diseases that account for the 
majority of the yield loss in wheat: Tan Spot, Leaf 
Rust, and Stripe Rust.

• P. striiformis Westend. F. sp. tritici (Pst), a
pathogen found in temperate areas with chilly and
damp conditions, is the root cause of wheat stripe
(yellow) rust [30]. Found mostly on the leaves,
but also on the stem and leaf sheaths. Pst affects
over 88% of the wheat types in the globe, causing
roughly US$ 1 billion in losses annually.
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• Leaf rust, the most common and widespread of the
wheat rust diseases, is caused by (Puccinia triticina
Eriks [31-33]. Although the timing and location of
grain losses brought on by leaf rust vary, the disease
has a considerable economic impact [34-35]. More
than US$ 350 million in damages are thought to
have been incurred by Pt in the US between 2000
and 2004. Leaf rust is a difficult disease to cure
due to the pathogen’s great diversity, the regular
appearance of novel virulence profiles, and the
pathogen’s strong tolerance to a wide range of
temperatures.

• Tan spot, also known as yellow spot or yellow
leaf blotch, is a foliar spotted disease caused by
yrenophora tritici repentis that affects all major
wheat-growing regions worldwide [35]. Average
yield losses are 50%, although yield losses of up to
50% have been observed in disease- prone regions
[36].

To prevent innate biases from showing up in the 
data, the distribution of the photographs was balanced 
as shown in Table 1, and they were carefully chosen for 
their quality and suitability for our intended use.

Table 2. Sample images (each class)

Class 
Name

Images Sample Source Image

Yellow 
Rust 924

Brown 
Rust 902

Tan 
Spot 910

Healthy 1116

Pre-processing

Real-world datasets are rarely in a usable state as-is, 
thus some operations need to be performed on the 
data to optimise it for machine learning. For image 
data, this can include operations like rescaling, 
resizing etc. as well as noise reduction, enhancement, 
normalisation to improve image quality for further 
processing. CNNs are designed to automatically learn 
and extract important information from raw image 
data, which reduces the need for feature engineering, 
however based on input images, pre-processing may 

be required to standardise input, reduce noise and 
format the images. For pre-processing the compiled 
dataset, which was assembled from several sources and 
had various dimensions, we had to resize and rescale 
images into a standard 224x224x3 format. To make 
them easier to utilise with the models, these were then 
compiled into a.csv file in the form of flattened vectors. 
Further for the purpose of comparison, for each of the 
existing model, to adapt the images to the models, the 
pre-processing functions offered by the Keras API was 
implemented, which include some fundamental pre-
processing functionality. For example, in the cases of 
VGG16 and ResNet50, images were converted from 
RGB to BGR format, which is the format in which the 
model was pretrained and thus the pre-trained weights 
were stored.

Performance Metrics

The following set of classification metrics were used 
to compare the various aspects of each of our selected 
models and analyse them based on them because none 
of the metrics available for assessing the effectiveness 
of machine learning and deep learning models alone 
offers a complete picture of the performance of the 
model.

1. Accuracy: A measure of how well the model’s
predicted values match the actual values. This
being a categorization issue, the accuracy is easily
determined as:

Accuracy =
 #Data Points Classified Correctly	

...(1)
#Total Data Points

2. Precision: Precision measures the proportion of
affirmative identifications that are in fact accurate.
In other words, for a specific class:

Precision =
# No. of True Positives

...(2)
#True Positives + #False Positives

3. Recall: Recall aims to quantify the percentage of
true positives for a given class that are properly
classified. Mathematically,

Recall =
# No. of True Positives

...(3)
#True Positives + #False Negatives

4. F1-Score: As stated, precision and recall are
counteractive measures to each other. However,
they are both important to the model. They are
counter to each other, in that attempting to increase
precision tends to decrease recall and vice versa. To
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solve this problem, the F1-score may be used [37].
The F1- score is the harmonic mean of precision 
and recall, and a high F1-score is a singular measure 
that can help us identify a model’s performance, as 
a high F1-score means both precision and recall are 
significant, while a low F1-score means either or 
both of them are very low, which is undesirable.

F1-Score =
 2 * Precision * Recall	

...(4)
 Precision + Recall

5. Number of Parameters: The number of
parameters the model must learn before it may
be used to forecast data points that have not yet
been observed. The number of parameters directly
affects the computational efficiency of the model
since the more parameters there are, the longer it
will take to train the model and the longer each
prediction will take to make when using it on data
that has not yet been seen [38].

Training metric graphs are an essential tool for 
evaluating the performance of a Convolutional Neural 
Network (CNN) during training. These graphs typically 
show the improvement of accuracy and reduction of 
loss over training epochs, respectively. The accuracy 
metric measures the percentage of correctly classified 
examples during training. It is a measure of how well 
the model is able to classify input data correctly. The 
loss metric, on the other hand, measures the difference 
between the predicted output of the model and the 
actual output. It is a measure of how well the model 
is able to fit the training data. Overall, the training 
metric graphs are a valuable tool for evaluating the 
performance of a model during training and can 
provide insights into both the learning capability and 
optimization process of the model. The training metric 
graphs for the proposed model are presented in Fig. 2, 
which illustrate the evolution of accuracy and loss over 
the training epochs. The graphs indicate that the model 
achieves a high accuracy score and low loss within a 
few epochs of training, demonstrating that the model 
quickly learns to classify the input data with high 
accuracy and minimal error. This observation suggests 
that the proposed model has a strong capability to 
learn and generalize from the training data, which is 
a desirable property for any machine learning model. 
However, it is important to note that the performance 
of the model on the training data may not always 
reflect its performance on unseen data, and further 

evaluation on a separate test set is necessary to confirm 
the generalization ability of the model, which are 
discussed earlier.

Fig. 2. (a) Model Accuracy, and (b) Model Loss

Performance Evaluation of Proposed Model

In this research, the dataset described earlier in this 
section, was split in the ratio of (70:30), where 70% 

Fig. 3. Performance Statistics of Developed Model
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data was used to train the developed model and 30% 
was used for model testing. The performance of the 
developed model for wheat disease detection and 
classification is measured on four performance metrics 
as shown in Fig. 3.

Comparison with State-of-Art Models

The developed model for wheat disease detection and 
classification is also compared with three pre-trained 
models as VGG16, MobileNet and ResNet50 in 
order to gauge its effectiveness and performance. The 
description about these three existing models is briefed 
below.

1. VGG16: The VGG16 model [39], along with
the VGG19, was created for the 2014 ImageNet
Challenge, where they won numerous problems. It
is a popular deep learning architecture for image
classification datasets. It includes 16 layers,
including a fully connected layer for classification
and a convolutional layer stack of 13 levels for
feature extraction. It has 1000 output classes and
a 224 × 224 × 3 picture input layer. The same
input structure is used for our purposes, the fully
connected layers were modified to output four
classes— one for the healthy class label and three
for each of the diseases in the dataset.

2. MobileNet: A lightweight, mobile CNN 
architecture called MobileNet was created with
the goal of balancing latency and accuracy
while outperforming existing state-of-the-art 
architectures with fewer training parameters. It
offers two hyperparameters that enable a user to
change the trade-off between latency and accuracy
based on the limitations of the situation [40]. It
includes 1000 output classes and a 224 × 224 × 3
picture input layer, similar to VGG16. As a result,

the MobileNet architecture was altered to suit our 
needs.

3. ResNet50: By reformatting layers as residual
learning functions that act with relation to the
input layers rather than unreferenced functions,
ResNets, also known as Residual Networks,
attempt to simplify the difficulty of training deeper
neural networks [40] compared to less complicated
non- residual designs, residual networks can reach
depths that are many times greater. The architects
triumphed in the ILSVRC and COCO classification
competitions, among others. ResNet50 is a
residual network with 50 layers, according to its
specifications. Even among the deeper Residual
Networks, while being one of the least deep, it
performs on par with cutting-edge designs. To
assess its performance, a customized the ResNet50
architecture, a 50-layer deep residual network
design, was used for the problem at hand.

The last fully connected layer of each model had a 
SoftMax implementation with 1000 classes since it 
was pretrained on the ImageNet dataset, which has 
1000 classes; we reduced this to 4 classes by altering 
the fully connected layers suitably. Furthermore, 
we freeze all levels of the model except from the 
completely linked layers in order to incorporate the 
idea of transfer learning as previously mentioned 
(see section 1 and Fig. 1). This resulted in a large 
decrease in trainable parameters and, consequently, 
computational complexity since only the parameters 
in the fully connected layer were trained and the 
convolutional layer’s parameters were utilized as-it-is 
for training. Using approved techniques that guarantee 
data balance, the dataset was randomly divided into 
training and testing sets for the purpose of proper 
training and testing. 70% and 30%, respectively, of the 

Table 3. Performance comparative statistics with state-of-art models

VGG16 MobileNet ResNet50 Developed Model

Layers 16 28 50 6
Parameters 1,51,17,667 64,40,387 3,00,10,499 5,04,71,939
Accuracy 0.9381 0.9434 0.8749 0.9449
Precision 0.9418 0.9456 0.9022 0.9471
Recall 0.9381 0.9487 0.8749 0.9449
F1-Score 0.9372 0.9472 0.8748 0.9445
Average training time 100 30 60 5
Average time taken per image 560 50 206 38
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entire dataset were made up of the training and testing 
datasets, which offered enough pictures for training as 
well as a sizeable quantity of testing data to produce 
insightful testing findings. Using the training data 
and batches of 32 photos at a time, the training was 
carried out across 10 epochs for each model. With the 
Adaptive Moment Estimator (ADAM) optimizer and 
Sparse Categorical Cross-Entropy as the loss function, 
the pretrained models used were made accessible via 
the Keras API. The model was then evaluated over 
the testing dataset to verify its correctness while using 
fresh data. The comparative performance statistics so 
obtained are given in Table 3.

Major Findings and Discussions

The major findings of the present research are discussed 
in this section.

• To categorise the photos as either healthy or
having one of the illnesses mentioned as having
occurred, each of the models was applied to the
compiled dataset. On the basis of the previously
mentioned metrics—accuracy, precision, recall,
and F1 score—the models were assessed on the
test dataset to see how well they performed while
trying to classify fresh data. Fig. 3 depicts the
performance metric results that have been achieved
by the proposed model, having accuracy: ‘94.49%’,
precision: ‘94.71%’, Recall: ‘94.49’ and F1-Score:
‘94.45%’, maintaining consistent results across the
various performance criteria which were one of the
limitations observed in the related works.

• Table 3 shows the comparison between the
proposed model and three other models, namely:
VGG16, MobileNet and ResNet50. Even though
the performance metrics achieved by the proposed
model: Accuracy: ‘94.49%’, Precision: ‘94.71%’,
Recall: ‘94.49’ and F1-Score: ‘94.45%’, do not
significantly differ from those observed in the case
of MobileNet : Accuracy: ‘94.34%’, Precision:
‘94.56%’, Recall: ‘94.87’ and F1-Score: ‘94.72%’,
under the same circumstances (number of epochs
and dataset preparation), the main difference
between the two can be observed in the case
of average training time – Proposed model: ‘5
minutes’ and MobileNet: ‘30 minutes’, as well
as the average time taken per image – Proposed
model: ‘38 milliseconds’ and MobileNet: ‘50

milliseconds’, these considerable deviations has 
been achieved by the overall reduction in the 
complexity of the proposed model as compared to 
MobileNet.

• As is evident in Table 3. the proposed model only
consists of a minimal ‘6’ layers (nearest being
VGG16 with 16 layers) which is considerably
lower than any of the other models whilst still
maintaining on par or better performance than
the other models taken under consideration.
This has been attained by tweaking the hyper-
parameters, leading to significant reduction in the
computational requirements to run the model along
with the strides in time for training of the model
and classification of the images, thus providing the
proposed model with an advantage in the real-time
application of the models for day-to-day analysis.

Conclusion and Future Scope

This paper proposes a novel model for the early 
detection of diseases in wheat crops using image 
analysis. Our model is based on a convolutional neural 
network that was pre-trained on a plant disease dataset. 
Notably, our model was shallower than the other 
models compared, making it more computationally 
efficient. Through comparative analysis with popular 
models such as VGG16, MobileNet, and ResNet50, we 
demonstrated that our proposed model outperformed 
these models in terms of computational cost, while still 
achieving comparable or even better results in terms 
of accuracy, precision, recall, and F1- score, all within 
the same training time. This suggests that our model 
is a more efficient and effective solution for this task, 
especially for devices with limited computational 
power. Given the impressive performance of our model 
in terms of computation and time, it has the potential 
to revolutionize disease diagnosis and treatment in the 
agricultural industry. By integrating the model with a 
knowledge base, it can be used to provide real-time 
remedies for various diseases in their early stages, 
thereby increasing the annual production of crops 
such as wheat. Moreover, the computational efficiency 
of our model makes it suitable for deployment on 
affordable mobile devices with a camera module, 
enabling farmers to diagnose crop diseases using their 
smartphones. This is particularly valuable for farmers 
in remote areas who may not have access to specialized 
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equipment or experts. While our model has already 
demonstrated excellent performance, there is still 
room for improvement. By continuously training the 
model on an extended dataset, we can further enhance 
its accuracy and precision. Additionally, we plan to test 
the model for more diseases and more crops, expanding 
its potential uses and impact. Overall, our proposed 
model represents an exciting advancement in the field 
of disease detection in crops and has the potential to 
significantly improve crop yields and food security.
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